Probability distribution

Probability distribution means the probability a random variable has. According to the type of a random variable the name changes.

Type of X

f(x)

Discrete

pmf(probability mass function)

Continuous

pdf(probability density function)

  • Mass = Density * length (in one dimension)

  • Mass = Density (in zero dimension)

(a)  f(x)=3(1−x)2,0<x<1,zero  elsewhereF(X=x)=∫0xf(t)dt=∫0x3(1−t)2dt=−(1−t)3∣0x=1−(1−x)3(a) \; f(x)=3(1-x)^2, 0<x<1, zero \; elsewhere \\ F(X=x) = \int_0^xf(t)dt=\int^x_03(1-t)^2dt=-(1-t)^3|^x_0=1-(1-x)^3
(b)  f(x)=1/x2,1<x<∞,zero  elsewhereF(x)=∫1xf(t)dt=∫1x1/x2dx=−1/t∣1x=1−1/x(b) \; f(x)=1/x^2, 1<x<\infty,zero \; elsewhere \\ F(x)=\int_1^xf(t)dt=\int_1^x1/x^2dx=-1/t|^x_1=1-1/x

Last updated

Was this helpful?