Discrete Variable

Binomial distribution

Definition

The typical example is binomial distribution. Before we deal with the binomial distribution, we first have to define the bernoulli distribution.

X(success)=1,X(failure)=0p(x)=px(1p)1x,x=0,1X(success)=1 , \quad X(failure)=0 \\ p(x)=p^x(1-p)^{1-x}, x=0,1

A sequence of bernoulli trial makes binomial distribution.

E(X)=p,  Var(X)=p(1p),  M(t)=pet+qE(X)=p, \; Var(X)=p(1-p), \; M(t)=pe^t+q

When X is the number of successes in n independent Bernoulli trials, we say that X follows Binomial distribution.

Properties

f(X)=(nx)px(1p)nxE(X)=np,  Var(X)=np(1p)M(t)=(pet+q)n,  <t<XZ1++Zn,  Ziiid  Bernoulli(p)f(X)=\binom n x p^x(1-p)^{n-x} \\ E(X)=np , \; Var(X)=np(1-p) \\ M(t)=(pe^t+q)^n, \; -\infty<t<\infty \\ X \equiv Z_1 +\cdots +Z_n , \; Z_i \sim iid \; Bernoulli(p)

Example

Let the winning rate of a gambler be 2 over 3. X is the number of winning for 3 games.

p(x)=3Cx(23)x(13)3x,x=0,1,2,3XB(3,23)p(x)=_3C_x(\dfrac{2}{3})^x(\dfrac{1}{3})^{3-x}, x=0,1,2,3 \\ X \sim B(3,\frac{2}{3})

Negative Binomial distribution

Definition

  • Number of success : rr

  • Number of failures: yy

  • The rate of success: pp

YY is equal to the number of failures until rthr_{th}successes.

p(y)=y+r1Cr1pr1(1p)ypYNB(r,p)p(y)=_{y+r-1}C_{r-1} p^{r-1}(1-p)^y*p \\ Y \sim NB(r,p)

Poisson distribution

XPoisson(λ),λ>0f(x;λ)=λxeλx!,x=0,1,2,P(k  events  in  time  period)=eeventstimetime  period(eventstimetime  period)kk!X \sim Poisson(\lambda), \quad \lambda >0 \\ f(x;\lambda)=\dfrac{\lambda^xe^{-\lambda}}{x!}, \quad x=0,1,2,\cdots \\ P(k \; events \; in \; time \; period)=e^{-\frac{events}{time}*time\;period}\dfrac{(\frac{events}{time}*time \; period)^k}{k!}

λ\lambda is the occurrence number of events per time unit.

https://towardsdatascience.com/the-poson-distribution-and-poisson-process-explained-4e2cb17d459

Properties

E(X)=Var(X)=λM(t)=em(et1)Y=X1+XnPoisson(λ1+λn) E(X)=Var(X)=\lambda \\ M(t)=e^{m(e^t-1)} \\ Y = X_1 +\cdots X_n \sim Poisson(\lambda_1+\cdots \lambda_n)
E(X)=x=0nxλxeλx!=λE(X)=\sum^n_{x=0} x\dfrac{\lambda^x e^{-\lambda}}{x!} = \lambda
MX(t)=E(etX)=x=0etx×λxexx!=eλx=0(λet)xx!=eλ(et1)\begin{split} M_X(t) &= E(e^{tX}) \\ & = \sum^{\infty}_{x=0} e^{tx} \times \dfrac{\lambda^x e^{-x}}{x!} \\ &= e^{-\lambda} \sum^{\infty}_{x=0}\dfrac{(\lambda e^t)^x}{x!} \\ & = e^{\lambda (e^t-1)} \end{split}

Poisson & Binomial

In a rare event situation(n is so large and p is so small in binomial distribution), binomial distribution asymptotically can be a poisson distribution.

limnn!nx(nx)!=1,  limn(1un)n=eu,  limn(1un)x=1\lim_{n \to \infty}\dfrac{n!}{n^x(n-x)!}=1, \; \lim_{n \to \infty}(1-\frac{u}{n})^n=e^{-u}, \; \lim_{n \to \infty}(1-\frac{u}{n})^{-x}=1
limnb(x;n,p)=limnn!x!(nx)!px(1p)nx=limnnxx!n!nx(nx)!px(1p)nx=limn(np)x(1p)nxx!=limn(np)x(1npn)nxx!=λxeλx!\begin{split} \lim_{n \to \infty}b(x;n,p) &= \lim_{n \to \infty}\dfrac{n!}{x!(n-x)!}p^x(1-p)^{n-x} \\ &= \lim_{n \to \infty} \dfrac{n^x}{x!} \dfrac{n!}{n^x(n-x)!} p^x(1-p)^{n-x} \\ &= \lim_{n \to \infty} \dfrac{(np)^x(1-p)^{n-x}}{x!} \\ &= \lim_{n \to \infty} \dfrac{(np)^x(1-\frac{np}{n})^{n-x}}{x!} \\ &= \dfrac{\lambda^xe^{-\lambda}}{x!} \end{split}

Exercises

Last updated

Was this helpful?