Definition
minimizeΒ f0β(x)subjecttofiβ(x)β€0,hiβ(x)=0 The objective function f0β(x) must be convex
The inequality constraint functions fiβ(x)must be convex
The equality constraint functions hiβ(x)must be affine
Optimal Point
Global Optimum: f0β(xβ)β€f0β(x)
Local Optimum: xβis an optimal point iff there exists r>0 xβ{xβ£β£β£xβxββ£β£β€r},f0β(xβ)β€f0β(x)
Any local optimum becomes global optimum in convex optimization problem.
First order optimality condition
βf0β(x)T(yβx)β₯0βyβX KKT Optimality conditions
βf0β(xβ)+Ξ£i=1mβΞ»iβββfiβ(xβ)+Ξ£i=1pβuiβββhiβ(xβ)=0β
Ξ»iββfiβ(xβ)=0
fiβ(xβ)β€0
hiβ(xβ)=0
Ξ»iβββ₯0