Convex Optimization

Definition

minimize f0(x)subject  to  fi(x)≤0,  hi(x)=0minimize \ f_0(x) \\ subject \; to \; f_i(x)\leq 0, \; h_i(x)=0
  • The objective function f0(x)f_0(x) must be convex

  • The inequality constraint functions fi(x)f_i(x)must be convex

  • The equality constraint functions hi(x)h_i(x)must be affine

Optimal Point

Global Optimum: f0(x∗)≤f0(x) f_0(x^*) \leq f_0(x)

Local Optimum: x∗x^* is an optimal point iff there exists r>0r>0 x∈{x∣∣∣x−x∗∣∣≤r},  f0(x∗)≤f0(x) x \in \{x| ||x-x^*||\leq r\}, \; f_0(x^*) \leq f_0(x)

Any local optimum becomes global optimum in convex optimization problem.

First order optimality condition

∇f0(x)T(y−x)≥0  ∀y∈X\nabla f_0(x)^T(y-x) \geq 0\; \forall y\in X

KKT Optimality conditions

  • ∇f0(x∗)+Σi=1mλi∗∇fi(x∗)+Σi=1pui∗∇hi(x∗)=0\nabla f_0(x^*)+\Sigma^m_{i=1} \lambda _i^*\nabla f_i(x^*)+\Sigma^p_{i=1}u_i^*\nabla h_i(x^*)=0 ​

  • λi∗fi(x∗)=0\lambda _i^*f_i(x^*)=0

  • fi(x∗)≤0 f _i(x^*) \leq 0

  • hi(x∗)=0 h_i(x^*)=0

  • λi∗≥0 \lambda _i^* \geq 0

Last updated

Was this helpful?