Definition
minimize f0​(x)subjecttofi​(x)≤0,hi​(x)=0 The objective function f0​(x) must be convex
The inequality constraint functions fi​(x)must be convex
The equality constraint functions hi​(x)must be affine
Optimal Point
Global Optimum: f0​(x∗)≤f0​(x)
Local Optimum: x∗is an optimal point iff there exists r>0 x∈{x∣∣∣x−x∗∣∣≤r},f0​(x∗)≤f0​(x)
Any local optimum becomes global optimum in convex optimization problem.
First order optimality condition
∇f0​(x)T(y−x)≥0∀y∈X KKT Optimality conditions
∇f0​(x∗)+Σi=1m​λi∗​∇fi​(x∗)+Σi=1p​ui∗​∇hi​(x∗)=0​
λi∗​fi​(x∗)=0
fi​(x∗)≤0
hi​(x∗)=0
λi∗​≥0