RDA

✏️ Definition

RDA(Regularized Discriminant Analysis) is the combinational model between LDA and QDA.

Σ^k(α)=αΣ^k+(1α)Σ^,α[0,1]\hat{\Sigma}_k(\alpha)=\alpha\hat{\Sigma}_k+(1-\alpha)\hat{\Sigma}, \quad \alpha \in[0,1]

Vector internal division. This is most common in combinational model. Σ^\hat{\Sigma}is a pooled covariance matrix from LDA. If we replace Σ^\hat{\Sigma}as Σ^(γ)\hat{\Sigma}(\gamma), this also can be changed into Σ^(α,γ)\hat{\Sigma}(\alpha,\gamma). For generalization, parameter is just added.

Σ^(γ)=γΣ^+(1γ)σ^2I,γ[0,1]\hat{\Sigma}(\gamma)=\gamma\hat{\Sigma}+(1-\gamma)\hat{\sigma}^2I, \quad \gamma \in[0,1]

σ^2I\hat{\sigma}^2I also can be changed into diag(Σ^),Σ^/p,...diag(\hat{\Sigma}), \hat{\Sigma}/p,...

Last updated

Was this helpful?